Micro Propagation of *Pterocarpus santalinoides* Using Three Different Growth Media

S. J. Ameh¹, C. U. Aguoru¹, C. C. Ihekwumere¹, O. J. Olasan¹ and U. J. Alfred¹

¹Department of Plant Science and Biotechnology, Federal University of Agriculture, Makurdi, Benue State, Nigeria.

Authors’ contributions

This work was done in collaboration among the authors. Author SJA designed the study, did literature searches, carried out laboratory experiments, wrote the protocol, performed the statistical analysis and managed the analyses of the study. Authors CCI and CUA supervised the study. Author UJA wrote the first draft of the manuscript and represented tabulated information with graphs and charts while all the authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JABB/2019/v21i330092

Editor(s):

(1) Dr. Mohamed AliAbdel-Rahman, Associate Professor, Department of Botany and Microbiology, Al-Azhar University, Cairo, Egypt.

Reviewers:

(1) Maria Adelina Jiménez Arellanes, Unidad de Investigación Médica en Farmacología, Hospital de Especialidades, Mexico.

(2) Saeid Abu-Romman, Al-Balqa’ Applied University, Jordan.

(3) Yuri Lima Melo, Universidade Estadual da Paraíba, Brazil.

Complete Peer review History: http://www.sdiarticle.com/review-history/48434

Received 11 February 2019
Accepted 20 April 2019
Published 27 April 2019

ABSTRACT

Aims: Micro propagation of *P. santalinoides* was carried out in order to ascertain the most appropriate culture media for its micro propagation.

Study Design: The experiment was laid out in different growth media in the laboratory.

Place and Duration of Study: The micro propagation of *Pterocarpus santalinoides* was carried out at the Tissue culture laboratory of the University of Nigeria, Nsukka and lasted between July and October 2018.

Methodology: Seeds from fresh and healthy ripe fruit which was cut open mechanically with the help of secateurs were gotten from Ai-kwu, Otukpa Local Government Area of Benue State, Nigeria. The seeds were air dried and used as explant. The explants were surface sterilized using NaOCl solution for 10 mins, rinsed with distilled water and then the soft seed coat were removed and the seeds were cultured under aseptic conditions on MS medium and other growth medium. Seeds of *Pterocarpus santalinoides* were inoculated on six different growth media with varying compositions. The media are MS, B5 and white’s without growth hormones (MSoo, B5oo, and WHoo), and each of them was supplemented with 3.0 mg/l BAP and 0.5 mg/l NAA (MSBN, B5BN, WHBN).

Corresponding author: E-mail: amehjosh55@gmail.com;
Results: Seed germination improved in all the media studied. However, MS combinations gave the best result (90-93%). The maximum number of leaves and roots recorded was in MSBN (3.8 for leaves and 2 for roots) followed by MSoo (2.6) and WHBN (2.6). The leaf area was best for the MS combination (0.232 cm²) followed by the White’s combinations (0.154 cm²) and least for the B5 combinations (0.026 cm²) while shoot and root length was maximum in MSBN (4.28 cm for the shoot and 1.18 cm for the root) followed by WHBN (1.90 cm). The result for t-test revealed that there was a significant difference between the parameters studied for growth media with growth hormones and those without growth hormones. The recorded percentage germination rate for MS medium without growth hormone was 90.75±0.97 while MS medium supplemented with growth hormone was 93.25±0.25. B5 medium without growth medium was 60.25±0.50 and when supplemented with growth hormone, the value was 66.50±0.57. White medium without growth hormone had a value of 75.25±1.70 and when supplemented with growth hormone the value was 78.0±0.81.

Conclusion: The growth rates of Pterocarpus santalinoides, in MS medium among other basal media (B5 and White) offers a compromise between all the growth parameters which indicates that variation of the basal medium composition could lead to enhanced Pterocarpus santalinoides regeneration efficiency.

Keywords: Explant plant; growth hormone; inoculated; shoot; roots.

1. INTRODUCTION

The plant Pterocarpus santalinoides (L’Herit ex Dc) is a dicotyledonous plant belonging to the family Fabaceae. It is a tree that grows along riverine forests of Africa and tropical South America and is a native of Brazil, Cameroon, Ghana, Nigeria, and Senegal [1]. The plant flowers from December to March and fruit ripening is between March and April. The Nigerian species are trees with light yellow flowers and they usually have alternate leaflets [1].

In Nigeria the plant is usually found in the Eastern, Southern and Northern parts. The vernacular names include Hausa (gunduru); Igbo (nturukpa); Idoma (atukpa) and Yoruba (gbengbe).

In Nigeria, various parts of the plant are used in traditional medicine to treat an array of human ailments. The fresh leaves of the plant are consumed locally in soups by the Igbos of South East Nigeria and are reported to be useful in the treatment of diarrhoea and other gastrointestinal disorders [2]. Also, the fresh-leaf extract combined with leaves of Solanum macrocarpum is used in the management of high blood pressure with similar uses reported among the Igbo tribe in Benue State, Nigeria [3]. The leaves of the plant are also eaten as vegetable serving as food for man, livestock browse its young shoot as fodder, the wood is white or yellow, not hard but termite-resistant and used for construction purposes, the bark contains tannins and dyes for dyeing and it is also medicinal because the tree bark is used as a stomach ache remedy [4]. The plant also provides useful services such as erosion control because it is an important species for soil conservation in water catchment areas, a good windbreak around settled areas and farms; it also forms nodules with nitrogenase activity thereby helping in nitrogen fixation. Leaf litters from the plant decompose slowly to release nitrogen and significantly increases soil exchangeable Calcium and Magnesium and hence improve soil fertility. It is also a beautiful tree with good gardening attributes [5].

In south-east Nigeria, the leaves of the plant is ethnomedicinally used against gastrointestinal diseases, diabetic syndrome and is known to exhibit antipyretic property [6]. The leaves are also used for the treatment of skin diseases [7]. Its stem-bark and leaf extracts are said to possess anti-enteropooling, antimalarial, anti-abortive and antibacterial properties [8,6]. The use of the leaves in veterinary medicine [7], fodder for livestock [1].

Based on its medicinal use, it is used among the Idoma and the Igede people of North Central Nigeria in the treatment of inflammation of lower abdomen/lower abdominal pain, stomach ache and other infectious diseases [9].

Micro propagation is a technique that manipulates small quantities of axenic plant materials ranging from single cells to stem segments, under conditions favorable to the
formation of new plants. It has proven to be the most efficient and cost-effective method of propagating large numbers of clonal offspring for many agronomic crops, including both herbaceous and woody perennial species.

Older and simpler techniques of cloning plants (cuttings, grafting, and division of parent stock material) are limited by seasonal constraints and the natural formation of new plant structures. Micro propagation on the other hand, allows the year-round production of new plants at rates significantly higher than those achievable by all other methods. The plants produced are genetically uniform, vigorous, and free from associations with other organisms.

The natural resurgence of *Pterocarpus santalinoides* is through seeds. However the natural germination rate of the plant has been reported to be very poor and this has been attributed in part to impervious seed coat. Also, the propagation of the plant through stem cuttings poses difficulties and over exploitation is putting further pressure on the plant which is at the verge of extinction if proper steps are not taken to ensure its conservation. In view of the problems of conventional propagation and lack of sufficient information on the *in vitro* propagation and response of the plant to various culture media, it was therefore necessary to carry out this study.

2. MATERIALS AND METHODS

2.1 Place of Study

The research work was carried out in the Plant Tissue Culture Laboratory of the University of Nigeria, Nsukka.

2.2 Collection of Explants (Seeds)

Seeds from fresh and healthy ripe fruits which were cut open mechanically with the help of secateurs were gotten from Al-kwu in Otukpa Local Government Area of Benue State, Nigeria and where air dried. The seeds were subjected to viability test. They were soaked in water for 15-20 minutes after which the seeds that floated were considered non-viable and hence, they were discarded while the seeds of uniform size that sank were used for the study.

2.3 Preparation of Explant

These seeds soaked in sterilized water were kept overnight and used for culture on the following day. Before culturing, they were surface sterilized using NaOCl solutions for 10 mins, followed by rinsing with distilled water. Soft seed coats were removed and the seeds were cultured under aseptic conditions on MS medium [10] without growth hormones. Seed cultures were incubated separately. After which germinated plantlets with nodes were observed for 35-40 days.

2.4 Nodal Segment Culture

The nodal segment from germinated plantlets was used for initial culture. The nodal segment with a single node was excised under aseptic conditions and used for culture media.

2.5 Culture Media and Condition

Three basal media namely MS, B5 [11] and White’s (WH) (White, 1963; Cultivation of Animal and Plant cells) were used for the initial culture of the nodal segments. Each of them without growth hormones was used as control. All the culture media were supplemented with sucrose and agar and the pH was adjusted 5.8. The media was autoclaved at the appropriate temperature for 20 minutes and culture tubes containing one nodal segment each were incubated.

2.6 Inoculation

2.6.1 Preparation of inoculation chamber

The inoculation chamber (Laminar air flow cabinet) was properly washed cleaned and allowed to dry. The surfaces were swabbed with absolute alcohol (ethanol) and ultra violet light was switched on for about 30 minutes to sterilize the environment after which all the needed material for the inoculation were kept inside the inoculation chamber and the laminar air flow was switched on [12].

2.6.2 Inoculation procedure

The seeds of *Pterocarpus santalinoides* were carefully selected and pre sterilized by a quick dip for few seconds in 70% ethanol. It was followed by sterilization which was by submerging the explants into 10% sodium hypochlorite (NaOCl) for 25 minutes; the sterilizer used was commercial bleach (Jik). After which the seeds were rinsed with 3 changes of sterile distilled water to remove residues of the sterilizer from the seeds. With the aid of forceps, the sterile seeds were transferred into well
labeled culture tubes placed in culture racks and kept in a growth room. Twenty test tubes for each treatment were placed in growth room. The date of the inoculation was noted and germination of the explants (seeds) was monitored daily. Germination readings were taken until there was no further seed germination. Also germination rate was noted under each treatment.

2.7 Germination Studies

The cultured seeds were regularly monitored as they germinated over a period of 30 days starting from the day of inoculation.

2.7.1 Percentage germination

The seeds that germinated daily under each treatment were counted and expressed as a percentage of the total number of seeds planted. The formula below was used for the calculation as reported by [13]

\[
\text{Percentage germination} = \left(\frac{\text{Number of germinated seeds} \times 100}{\text{Total number of seeds planted}} \right)
\]

2.7.2 Germination rate

This is the reciprocal of the day or time 50% germination is attained as reported by Ronaldo et al. (2007).

The formula is thus

\[
\text{Germination rate} = \left(\frac{\text{Number of germinated seeds} \times 100}{\text{the day or time 50\% germination is attained}} \right)
\]

2.8 Determination of Other Growth Parameters

Seedlings from each treatment at the end of the experiment were sampled destructively to obtain the following parameters.

2.8.1 Number of leaves

The number of leaves was visually counted and recorded.

2.8.2 Leaf area

The leaf area of each seedling was determined by paper tracing method, the leaf was detached and placed on a graph sheet and the outline traced. The number of boxes covered was added to the value obtained by dividing the number of uncovered boxes by 25 which is the number of boxes of each square of the graph sheet.

2.8.3 Length of shoot

The length of the shoot was taken with the aid of a long thread which was later superimposed on a meter rule and the measurement taken in cm.

2.8.4 Number of roots

The number of roots were visually counted and recorded.

2.8.5 Length of roots

The length of the root was measured with the aid of a long thread which was later superimposed on a meter rule and the measurement taken in cm. The data on the number of shoots per explants, number of nodes per shoot and shoot length were recorded after 45 days of inoculation of the nodal explants.

2.9 Data Analysis

The data was analyzed using analytical software SPSS (version 16). Mean difference of all the treatments were compared using t-test at 5% significant level.

3. RESULTS AND DISCUSSION

3.1 Percentage Growth Rate

The percentage growth rate for all the growth media used was recorded. (Table 1) the table revealed that the percentage growth rate was highest in the MS medium with growth hormone (93%), followed by MS medium without growth hormone with 90% growth rate, White medium with growth hormone with 78% germination rate, White medium without growth hormone with 75% growth rate, B5 medium with growth hormone of 66% growth rate and the least was recorded on the B5 medium without growth hormone with 60% growth rate. The result as revealed by t-test showed a significant difference between the different growth media. This information is also represented with a pie chart (Fig. 1).

3.2 Number of Leaves and Shoot

The difference between the number of leaves and number of roots using different growth media is shown in Table 2. The table shows that the MS
medium with growth hormone has a mean value of 3.8 for leaves and 2 for roots, MS medium without growth hormone with a mean value of 2.6 for leaves and 1 for roots which is the same number for White medium with growth hormone, B5 medium with growth hormone has a mean value of 2 for number of leaves and 0.2 for number of roots, White medium without growth hormone with a mean value of 1.6 for leaves and 0.816 for the number of roots and the least was recorded for B5 medium without growth hormone with a mean value of 1 for the number of leaves and 0.1 for the number of roots. The result for t-test showed a significant difference between the growth media. This information is represented with a bar chart (Fig. 2).

Table 1. Percentage growth rate

<table>
<thead>
<tr>
<th>Growth media</th>
<th>Percentage germination rate</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS medium without growth hormone</td>
<td>90</td>
<td>90.75±0.97</td>
</tr>
<tr>
<td>MS medium with growth hormone</td>
<td>93</td>
<td>93.25±0.25</td>
</tr>
<tr>
<td>B5 medium without growth hormone</td>
<td>60</td>
<td>60.25±0.50</td>
</tr>
<tr>
<td>B5 medium with growth hormone</td>
<td>66</td>
<td>66.50±0.57</td>
</tr>
<tr>
<td>White medium without growth hormone</td>
<td>75</td>
<td>75.25±1.70</td>
</tr>
<tr>
<td>White medium with growth hormone</td>
<td>78</td>
<td>78.0±0.81</td>
</tr>
</tbody>
</table>

Fig. 1. Chart showing percentage growth rate
Key: MS oo – MS medium without growth hormone; MSBN – MS medium with growth hormone; B5oo – B5 medium without growth hormone; B5BN – B5 medium with growth hormone; WH oo – White medium without growth hormone; WHBN – White medium with growth hormone;

Table 2. Mean values for number of leaves and roots

<table>
<thead>
<tr>
<th>Growth media</th>
<th>Number of leaves</th>
<th>Number of roots</th>
<th>t-test for number of leaves</th>
<th>t-test for number of roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS oo</td>
<td>2.6</td>
<td>1</td>
<td>2.62±0.05</td>
<td>1.09±0.02</td>
</tr>
<tr>
<td>MSBN</td>
<td>3.8</td>
<td>2</td>
<td>3.8±0.08</td>
<td>2.0±0.03</td>
</tr>
<tr>
<td>B500</td>
<td>1</td>
<td>0.1</td>
<td>1.0±0.08</td>
<td>0.10±0.08</td>
</tr>
<tr>
<td>B5BN</td>
<td>2</td>
<td>0.2</td>
<td>2.0±0.16</td>
<td>0.2±0.02</td>
</tr>
<tr>
<td>WH oo</td>
<td>1.6</td>
<td>0.816</td>
<td>1.62±0.17</td>
<td>0.816±0.08</td>
</tr>
<tr>
<td>WHBN</td>
<td>2.6</td>
<td>1</td>
<td>2.60±0.08</td>
<td>1.0±0.16</td>
</tr>
</tbody>
</table>

Key: MS oo – MS medium without growth hormone; MSBN – MS medium with growth hormone; B5oo – B5 medium without growth hormone; B5BN – B5 medium with growth hormone; WH oo – White medium without growth hormone; WHBN – White medium with growth hormone
3.3 Leaf Area for the Different Growth Media

The mean value for the leaf area using different growth media is shown in Table 3 and Fig. 3. MS medium with growth hormone has the highest leaf area with 0.232 cm², White medium with growth hormone (0.154 cm²), MS medium without growth hormone (0.077 cm²), White medium without growth hormone (0.04 cm²), B5 medium with growth hormone (0.026 cm²) and the least was recorded for B5 medium without growth hormone (0.021 cm²). The t-test result showed a significant difference between the growth media.

3.4 Mean Values for Length of Shoot and Roots

The mean values for length of shoot and roots on different growth media is shown in Table 4 and Fig. 4. The table revealed that MS medium without growth hormone has a value of 1.18 for shoots and 0.4 for roots, MS medium with growth hormone has 4.24 for shoot and 1.18 for roots, B5 medium without growth hormone has a value of 0.88 for shoot and 0 for roots, B5 medium with growth hormone has a value of 1.22 for shoot and 0 for roots, White medium without growth hormone has a value of 1.16 for shoot and 0.01 for roots while White medium with growth hormone has a value of 1.9 for shoot and 0.2 for roots. The result for t-test showed a significant difference between the growth media.

A significant effect of the various culture media on shoot, leaf and root formation was observed in the present research. In line with the results obtained in this study, [14], who used MS medium in the propagation of Mentha arvensis reported an increase in rooting of regenerates when compared to other basal media. On the other hand, [15] also observed that a reduction in strength of MS medium resulted in the increase of in vitro shoot and root formation of high bush blueberry. [16] conducted a similar experiment with this study on ginger to determine the effects of different media and there strength (full and Half MS strength), types (B5 and white’s media) and source of nitrogen (NH₄NO₃) on shoot (number and length), leaf (number and area) and root number of ginger. His results were similar to those obtained in this study and indicated an increase of root length in MS basal medium when compared to other treatments. Though on a contrary, [17] reported that B5 basal medium proved to be superior to MS basal medium in callus-mediated regeneration from epicotyl and cotyledonary tissues of castor plant.

![Fig. 2. Bar chart showing mean values for number of leaves and roots](image)

Key: MS oo – MS medium without growth hormone; MSBN – MS medium with growth hormone; B5oo – B5 medium without growth hormone; B5BN – B5 medium with growth hormone; WH oo – White medium without growth hormone; WHBN – White medium with growth hormone
Table 3. Leaf area

<table>
<thead>
<tr>
<th>Growth media</th>
<th>Leaf area (cm²)</th>
<th>t-test for leaf area</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS medium without growth hormone</td>
<td>0.077</td>
<td>0.077±0.02</td>
</tr>
<tr>
<td>MS medium with growth hormone</td>
<td>0.232</td>
<td>0.232±0.08</td>
</tr>
<tr>
<td>B5 medium without growth hormone</td>
<td>0.021</td>
<td>0.021±0.08</td>
</tr>
<tr>
<td>B5 medium with growth hormone</td>
<td>0.026</td>
<td>0.026±0.02</td>
</tr>
<tr>
<td>White medium without growth hormone</td>
<td>0.04</td>
<td>0.04±0.08</td>
</tr>
<tr>
<td>White medium with growth hormone</td>
<td>0.154</td>
<td>0.154±0.05</td>
</tr>
</tbody>
</table>

Fig. 3. Column chart showing mean values of leave area

Key: MS oo – MS medium without growth hormone; MSBN – MS medium with growth hormone; B5 oo – B5 medium without growth hormone; B5BN – B5 medium with growth hormone; WH oo – White medium without growth hormone; WHBN – White medium with growth hormone

Table 4. Mean values for length of shoot and roots on different growth media

<table>
<thead>
<tr>
<th>Growth Media</th>
<th>Shoot (cm)</th>
<th>Root (cm)</th>
<th>t-test for Shoot</th>
<th>t-test for root</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS oo</td>
<td>1.18</td>
<td>0.4</td>
<td>1.18±0.16</td>
<td>0.4±0.05</td>
</tr>
<tr>
<td>MSBN</td>
<td>4.24</td>
<td>1.18</td>
<td>4.24±0.019</td>
<td>1.18±0.016</td>
</tr>
<tr>
<td>B5 oo</td>
<td>0.88</td>
<td>0</td>
<td>0.88±0.013</td>
<td>0</td>
</tr>
<tr>
<td>B5BN</td>
<td>1.22</td>
<td>0</td>
<td>1.22±0.00</td>
<td>0</td>
</tr>
<tr>
<td>WH oo</td>
<td>1.16</td>
<td>0.01</td>
<td>1.16±0.05</td>
<td>0.01±0.00</td>
</tr>
<tr>
<td>WHBN</td>
<td>1.9</td>
<td>0.2</td>
<td>1.9±0.00</td>
<td>0.2±0.09</td>
</tr>
</tbody>
</table>

Key: MS oo – MS medium without growth hormone; MSBN – MS medium with growth hormone; B5 oo – B5 medium without growth hormone; B5BN – B5 medium with growth hormone; WH oo – White medium without growth hormone; WHBN – White medium with growth hormone

In this study, three basal media were compared (MS, White and B5) and all of them supported the in vitro regeneration of *Pterocarpus santalinoides* seeds, but MS medium was found to be significantly superior to both B5 and White media in all the growth parameters studied (length of roots, length of shoots, number of leaves and number of roots). These findings suggest that MS is better than both B5 and White for the seed germination of in vitro propagation of *Pterocarpus santalinoides* because MS medium has a balanced composition. The composition of macro, micro nutrients, vitamins and organics that are highly suitable for majority of plant species over the White and B5 media.
Fig. 4. Bar chart showing mean values of the length of shoot and root
Key: MS oo – MS medium without growth hormone; MSBN – MS medium with growth hormone;
B5oo – B5 medium without growth hormone; B5BN – B5 medium with growth hormone;
WH oo – White medium without growth hormone; WHBN – White medium with growth hormone

4. CONCLUSION
The growth rates of *Pterocarpus santalinoides* in MS medium among other basal media (B5 and White) offers a compromise between all the growth parameters which indicates that variation of the basal medium composition could lead to enhanced *Pterocarpus santalinoides* regeneration efficiency.

ACKNOWLEDGEMENTS
The authors return all thanks to God for His enabling grace and protection throughout the duration of this study. We are grateful to the entire staff in the department of Plant Science and Biotechnology, Federal University of Agriculture, Makurdi, Benue State.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
9. Igoli J, Igwue I, Igoli N. Traditional medicinal practices among the Igede