External Quality Assessment: Microscopy Diagnosis of *Plasmodium falciparum* for a Better Management of Malaria in the Regional Health Center in Côte d’Ivoire

Beourou Sylvain¹*, Tuo Karim¹, A. Toure Offianan¹, F. A. N’dhouba Claude², N’goran Hubert², Bassinka Issiaka¹, Penali Louis¹, Dosso Mireille³ and J. Djaman Allico¹,⁴

¹Institut Pasteur de Côte d’Ivoire, Parasitology-Mycology, Malariology Unit, 01 P.O.Box 490 Abidjan 01, Côte d’Ivoire.
²Institut Pasteur, External Quality Assessment Technician, 01 P.O.Box 490 Abidjan 01, Côte d’Ivoire.
³Department of Microbiology, Institut Pasteur de Côte d’Ivoire, 01 P.O.Box 490 Abidjan 01, Côte d’Ivoire.
⁴University of Felix Houphouet Boigny, Laboratory of Biochemistry and Pharmacodynamics, Faculty of Biosciences, 22 P.O.Box 582 Abidjan 22, Côte d’Ivoire.

Authors’ contributions

This work was carried out in collaboration between all authors. Authors DM and JDA managed the study concept and design. Authors DM, JDA and BS performed the supervision of the study. Authors BS, NC and NH did the statistical analysis. Authors ATO and BS supported for materials. Laboratory bioassay was done by authors BI, TK and BS. Analysis and interpretation of data was done by author BS. Drafting of the manuscript was done by author BS. Revision of final manuscript was done by all authors.

Article Information

DOI: 10.9734/JABB/2018/v20i230070

Editor(s):

(1) Dr. Michael BamitaleOsho, Department of Biological Sciences, McPherson University, Nigeria and Department of Microbiology, Faculty of Sciences, Olabisi Onabanjo University, Nigeria.

Reviewers:

(1) Kamgain Mawabo Lugarde, District Hospital of Deido, Cameroon.
(2) Aina, oluwagbemiga. Olanrewaju, Nigerian Institute of Medical Research, Nigeria.
(3) Akobi Oliver Adeyemi, Federal Medical Centre, Nigeria.

Complete Peer review History: http://www.sdiarticle3.com/review-history/37880

Received 12 November 2017
Accepted 14 February 2018
Published 23 February 2019

Short Research Article

Corresponding author: E-mail: be_sylvain@yahoo.fr, sylvain.beourou@pasteur.ci;
ABSTRACT

Context: In Côte d'Ivoire, malaria is transmitted throughout the year with an increased rate during the rainy season. This pathology is endemic on the whole territory with seasonal variations. The major vector is *Anopheles gambiae*. The external microbiology quality assessment programs organized by both Institut Pasteur of Côte d'Ivoire (IPCI) and PEPFAR, malaria microscopy was randomly carried out in 1/3 of the country regional health center laboratories. Laboratory technicians play a key role in malaria control programs because care services such as the disease monitoring depend on their diagnosis and technical skills.

Aim: The aim of this evaluation was to control the quality of the microscopic diagnosis and the performance of on-duty technicians for the management of feverish patients and efforts to strengthen laboratory services.

Méthodology: Six (6) RHC (Regional Health Center) laboratories were involved in the evaluation. Anonymity code was assigned to each of the participating laboratories. There were many discrepancies in External Quality Assessment (EQA) results on the field not with standing the parasitemia, low or high.

Results: Only 30% of correct answers were recorded for *P. falciparum* identification. For *P. ovale*, we found a failure rate of 100% for laboratories.

Conclusion: Parasitemia was approximate and many confusions were observed regarding the different stages of parasites.

Keywords: *Plasmodium falciparum*; microscopy diagnosis; Côte d'Ivoire.

1. INTRODUCTION

According to WHO last estimations published in December (2016), there were 212 million malaria cases and 429,000 deaths (2015). In Côte d'Ivoire the vulnerable population was estimated at 8 million (2015). 4 million cases of malaria were confirmed with 14,000 deaths recorded. The number of cases of malaria confirmed through microscopy was estimated to 500 thousand. All cases of diagnosed malaria were caused by *Plasmodium falciparum*, the most dangerous and dreadful plasmodial species and a good reduction in mortality depends inevitably on good management of malaria cases [1].

For an efficient treatment, WHO recommends that malaria is confirmed in all suspected cases by a diagnosis based on parasite research (by microscopy or rapid diagnostic test) prior to treatment. According to the National Malaria Control Program (NMCP) report published [2], malaria represents 80% of medical consultations and hospitalizations in Côte d'Ivoire and accounts for 33% of mortality causes. In Côte d'Ivoire, malaria is transmitted throughout the year with an increased rate during the rainy season. This pathology is having a field in the form of stable malaria, endemic on the whole territory with seasonal variations. The major vector is *Anopheles gambiae*. Early diagnosis and treatment of malaria reduce disease intensity and prevent death. They also help reducing malaria transmission.

In a series of external microbiology quality assessment programs organized by both Institut Pasteur of Côte d'Ivoire (IPCI) and PEPFAR, malaria microscopy was randomly carried out in 1/3 of the country regional health center laboratories. Laboratory technicians play a key role in malaria control programs because care services such as the disease monitoring depend on their diagnosis and technical skills.

The objective of this evaluation was to control the quality of the microscopic diagnosis and the performance of on-duty technicians for the management of feverish patients and efforts aiming at strengthening laboratory services. Several short courses of malaria through microscopy courses will significantly increase the knowledge and the level of microscopy skills of the trainees and will bridge up the significant difference in baseline microscopy skills of the different categories of trainees those who participated in the courses.

For this purpose, six 6 laboratories of the Regional Health Centers (RHC) of the health districts of Côte d'Ivoire participated in the study of EQA in connection with the WHO guideline external quality assessment [3].
2. METHODOLOGY

Six (6) RHC (Regional Health Center) laboratories were involved in the evaluation. Anonymity code was assigned to each of the participating laboratories. It was about a Giemsa staining thick blood smears and thin blood film. The panel was made of twenty-four (24) thin blood film slides with the same staining. Thin blood films were made and stained 21 days before the expected date and results were validated by the National reference center for malaria chemo-resistance hosted by IPCI through the unit of malariology. Slide transportation was done by road and samples were given to the head of the medical analyzes laboratory.

A questionnaire was submitted to participants including slide code, clinical information about the patient, the result of thick blood smear with parasite density, the result of thin blood film with identification of species and sexual and non-sexual forms and results.

Only the mean of parasitemia estimated by participants was calculated and reported. The results were saved as an Excel file. They were classified as: correct (parasitic density inferior or equal to 10%), minor errors (non-significant difference or parasitic density inferior or equal to 20%) or major errors (incorrect diagnosis on species or sexual or non-sexual forms or Incorrect interpretation or parasitic density exceeding 20%).

3. RESULTS AND DISCUSSION

Many discrepancies were noticed in the parasitic microscopy results for both the density and determination of species. Some results were over estimated (Table 1) and others were underestimated by participants (Table 1). Only 30% of correct answers were recorded for \textit{P. falciparum} identification. For \textit{P. ovale}, we found a failure rate of 100% for laboratories (Table 2). Parasitemia was approximate and much confusion was observed regarding the different stages of parasites (Table 1). However, there is a laboratory (lab. 007) which from the point of view of parasitological diagnosis and diagnosis of species has nothing found. Some technicians could use today the so-called “plus system” which is an old, simple, but much less precise method for establishing parasitic density in thick blood smears. Because of its unreliability, it was replaced by the method of determination of parasitic density by calculation, a simple mathematical formula, which multiplies the number of parasites by 8000 (standard number of leukocytes/µl) dividing by the number of leukocytes (200 or 500). The result is the number of parasites/µl of blood. Studies showed that many technicians forgot the details of the plus system and were mistaken about the code (the number of signs +) and numeration (the number of parasites per field or for 100 fields), which leads to unreliable information about the parasitic density. The number of red blood cells infected with \textit{P. falciparum} parasites is essential and the percentage of parasitemia should always be reported as this has effects on the prognosis and the mode of treatment used. This qualitative assessment may be considered insufficient in malaria-endemic areas [4,5]. But some biologist technicians who do not want to get rid of this method would have difficulty adapting to the counting methods by force.

Overestimation of parasitemia observed in some participants could be due to counting errors. A red blood cell infected with multiple parasites counts as a parasitic red blood cell. Another reason could include gametocytes when calculating parasitemia. When calculating the \textit{Plasmodium falciparum} parasitemia, only the trophozoite stages were counted. Gametocytes and other species of malaria parasites are excluded from the result, but it was important to know them and to differentiate all forms of the parasite biomass (Tables 1 and 2). Participants who underestimated parasitemia might not have counted a sufficient number of fields (Table 1). It is recommended to count 40 fields of a thin blood smear (Table 2), and Thick films should be examined by two observers, each viewing 200 high power fields or counted 200 leukocytes. Especially when parasitemia is low due to the possible unequal distribution of parasites or to count in the case of a thick blood smear, it is recommended to Count until 500 leukocytes [6]. Considering the diagnostic results per laboratory, no laboratory scored less than 80%, level of technical skill and accuracy expected for the examination of a series of slides for accreditation is inevitable, whereas the scores of all assessed laboratories range from 0% to 50% (Fig. 1). Technicians, once certified, it is important to ensure that the level reached during the training is maintained. To achieve this, it is agreed that their work is regularly monitored by a supervisor at all times to help them improve their techniques and skills. This is called quality control which is part of the general activities of quality control at the laboratories.
Table 1. Analysis of laboratory performance according to parasitemia results

<table>
<thead>
<tr>
<th>Order number of assessed lab</th>
<th>Plasmodium strain slide 1</th>
<th>Plasmodium strain slide 2</th>
<th>Assessed lab results categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC lab</td>
<td>Assessed lab</td>
<td>NRC lab</td>
<td>Assessed lab</td>
</tr>
<tr>
<td>001</td>
<td>440 gam/µl</td>
<td>4440 sch/µl</td>
<td>4800 tr/µl</td>
</tr>
<tr>
<td>002</td>
<td>7080 tr/µl</td>
<td>1600 sch/µl</td>
<td>Nc</td>
</tr>
<tr>
<td>003</td>
<td>840 gam/µl</td>
<td>20120 tr/µl</td>
<td>8500 sch/µl</td>
</tr>
<tr>
<td>004</td>
<td>1638 tr/µl</td>
<td>4120 sch/µl</td>
<td>Nc</td>
</tr>
<tr>
<td>006</td>
<td>360 gam/µl</td>
<td>2400 sch/µl</td>
<td>Nc</td>
</tr>
<tr>
<td>007</td>
<td>850 gam/µl</td>
<td>3890 sch/µl</td>
<td>Nc</td>
</tr>
</tbody>
</table>

gam: gametocyte; tr: trophozoïte; sch: schizonte Nc: Not counted NRC: National Reference Center

Table 2. Laboratory performance analysis according to the results of the identification of plasmodial strain

<table>
<thead>
<tr>
<th>Order number of assessed lab</th>
<th>Plasmodium strain slide 3</th>
<th>Plasmodium strain slide 4</th>
<th>Assessed lab results categorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NRC lab</td>
<td>Assessed lab</td>
<td>NRC lab</td>
<td>Assessed lab</td>
</tr>
<tr>
<td>001</td>
<td>Pf</td>
<td>Po</td>
<td>Po</td>
</tr>
<tr>
<td>002</td>
<td>Pf</td>
<td>Po</td>
<td>Ni</td>
</tr>
<tr>
<td>003</td>
<td>Pf</td>
<td>Ni</td>
<td>Po</td>
</tr>
<tr>
<td>004</td>
<td>Pf</td>
<td>Pf</td>
<td>Po</td>
</tr>
<tr>
<td>006</td>
<td>Pf</td>
<td>Po</td>
<td>Po</td>
</tr>
<tr>
<td>007</td>
<td>Pf</td>
<td>Ni</td>
<td>Po</td>
</tr>
</tbody>
</table>

Pf: Plasmodium falciparum; Po: Plasmodium ovale; Pm: Plasmodium malariae Ni: Nothing identified

Fig. 1. Mean obtained by participating laboratory

assurance applied in all microscopic malaria diagnostic services [7].

4. CONCLUSION

Microscopy identification of parasite though being WHO standard method opens up a current reflection for a better management of malaria. Rapid diagnostic tests (RDTs) for a malarial antigen cannot replace microscopy but are indicated as a supplementary test when malaria diagnosis is performed by relatively inexperienced staff. Microscopy requires a high qualified staff which is not always available in areas where malaria is endemic. It is therefore important to maintain the level reached by technicians during their training. This requires supervision and a regular supervision of their work. This will help to continuously improve their skills. Quality control should be part of the general activities applied in all microscopic malaria diagnostic services.
ETHICAL APPROVAL

This study was carried out according to the guidelines of the Ivorian National reference center for malaria chemo-resistance created by the interministerial decree number 393/08/2006, and conduct research according to the Ivorian National Ethical Committee and Research with due approval.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

6. WHO. Bench aids for malaria microscopy; 2009:12.

© 2018 Sylvain et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle3.com/review-history/37880