Antibacterial Activity of *Zingiber officinale* on *Escherichia coli* and *Staphylococcus aureus*

Sani Njobdi¹*, Maryam Gambo¹ and Gali Adamu Ishaku¹

¹Department of Biotechnology, School of Life Science, Modibbo Adama University of Technology, P.M.B. 1079, Yola, Nigeria.

Authors' contributions

This work was carried out in collaboration between all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JABB/2018/43534

Editor(s): (1) Dr. Andrzej Kowalski, Department of Biochemistry and Genetics, Institute of Biology, Jan Kochanowski University, Kielce, Poland.

(2) Dr. Mohamed AliAbdel-Rahman, Associate prof., Department of Botany and Microbiology, Al-Azhar University, Cairo, Egypt.

(3) Dr. Afroz Alam, Professor, Coordinator UG (Botany) & PG (Plant Science), Department of Bioscience & Biotechnology, Banasthali University, India.

Reviewers: (1) Daisy Machado, University of Campinas, Brazil.

(2) R. Prabha, Dairy Science College, Karnatak Veterinary, Animal and Fisheries Sciences University, India.

(3) Pankaj Kapupara, RK University, India.

Complete Peer review History: http://www.sciencedomain.org/review-history/26519

Received 20 June 2018

Accepted 06 September 2018

Published 04 October 2018

ABSTRACT

Aims: The aim of this study was to investigate the antibacterial activity of extracts of fresh, dried and oil of *Zingiber officinale* on *Escherichia coli* and *Staphylococcus aureus*. Minimum inhibitory concentrations of the extracts against test organisms were determined and their inhibitory effects were compared with commercially available antibiotics.

Study Design: Laboratory based controlled experiment.

Place and Duration of Study: The research was conducted at the Molecular Biology Laboratory, Department of Biotechnology, Modibbo Adamawa University of Technology, Yola, Nigeria between January and May, 2014.

Methodology: Extracts from fresh and dried rhizomes of *Z. officinale* as well as ginger oil, which was extracted with the aid soxhlet extraction apparatus using n-hexane as the solvent were tested on isolates of *E. coli* and *S. aureus* using the agar well diffusion method. Both bacterial isolates were also subjected to standard antibiotic susceptibility test for comparison. Broth dilution method was used to determine the minimum inhibitory concentrations of the extracts on the test organisms.

Results: At concentrations of 10 mg/mL, 20 mg/mL, 30 mg/mL, and 40 mg/mL the zones of
1. INTRODUCTION

Ginger (Zingiber officinale Roscoe, family Zingiberaceae) is often described as a slender perennial herb plant that is about two feet in height. The flower is greenish yellow which looks like orchids. It is distributed widely in places like South-Eastern Asia and its medicinal history dated back to 2500 years in places like China and India. Its rhizome is a horizontal, fleshy, branched, yellowish or whitish to brown in colour and it is aromatic in nature. The dried rhizome of the ginger contains about 1-4% of volatile oils which are regarded as the medically active components and responsible for the characteristic taste and odour [1,2]. Gingerols are the main pungent compounds in ginger which can also be converted into zingerone, paradol and shogaols. 6-gingerol seem to be responsible for ginger taste where 6-shogaol have proven to have anti-inflammatory, antipyretic, anti-tussive, analgesic and hypotensive effects [3,4]. Currently Z. officinale is also one of the well known and accepted herbal medicines for treating inflammatory diseases. It has been an alternative therapiac agent [5]. Ginger is available in many commercial products such as tea, tincture, cookies, beer, capsule, soda, syrup and jam [6].

The increase in the use and misuse of antibiotics has actually induced microorganism to gain resistance factor which is becoming a global problem [7,8]. This has resulted to the need of finding alternative therapeutic drugs for the treatment of disease with a preference for plant materials which has shown to have fewer side effects [9,10]. The use of plants and their extracts for the treatment of infectious diseases has been practiced for many years in different parts of the world [11,12]. The recent approval of traditional medicine as an alternative form of health care and the development of microbial resistance to the conventional antibiotics have motivated researchers to search for antimicrobial activities of medicinal plants [13,14]. Plants derived medicines are used in many different forms such as powder, ointments, liquid, incisions and liniments [15].

This study was design to asses the antimicrobial activity of dried, fresh and oil extracts of Z. officinale against E. coli and S. aureus isolates and determine the minimum inhibitory concentration of Z. officinale against E. coli and S. aureus isolate. To compare the inhibitory effects of different Z. officinale rhizome extracts with commercially available antibiotics against the test organisms (E. coli and S. aureus).

2. MATERIALS AND METHODS

Fresh and dried rhizomes of white Z. officinale (white ginger) were obtained from Jimeta modern market, Yola, Nigeria. The samples were taken to the Molecular Biology Laboratory, Moddibo Adama University of Technology, Yola, Nigeria for further processing. Isolates of E. coli and S. aureus were obtained from the stock culture in the Microbiology Department and taken to the Molecular Biology Laboratory, Moddibo Adama University of Technology, Yola.

2.1 Preparation of Fresh Z. officinale

The aqueous ginger extract was prepared according to methods described by Onyeagba et al. [16]. One hundred grams of fresh washed Z. officinale cloves were macerated in a sterile, ceramic mortar. The homogenate was then filtered off with a sterile muslin cloth and used directly for the antibacterial activity test.
2.2 Preparation of Dried Z. officinale

The dried Z. officinale extract was prepared according to methods described by Debasmita et al. [17]. Dried Z. officinale materials were crushed using mortar and pestle to powder form and 200 g of powder was measured, dissolved in 500 mL of sterile distilled water and was tightly sealed in a container that was regularly agitated for two days. The suspension was filtered using whatman filter paper. The filtrate was evaporated to dryness in a water bath at a temperature of 55°C and preserved for the antimicrobial activity test.

2.3 Extraction of Oil Using Sohxlet Extractor

The ginger oil was extracted using the soxhlet apparatus with n-hexene as solvent according to methods described by Hiba et al. [18]. Thirty grams of the ground fresh Z. officinale was wrapped in a filter paper and placed inside the soxhlet apparatus. For total extracting time of 10 hours, 250 ml of the solvent was maintained continuously refluxing over the samples. After extraction, the solvent was allowed to evaporate from the mixture, in order to obtain only ginger oil. The resultant extract was transferred to glass dishes and placed in an oven at 40°C for 24 hrs. The extracts were kept at 4°C until assessments for antimicrobial activities.

2.4 Preparation of Nutrient Agar

Twenty eight grams of the nutrient agar powder were dissolved in 1 litre of distilled water and autoclaved at 121°C for 15 mins. The nutrient Agar was allowed to cool and was dispensed into each of the 24 petri dishes and allowed to solidify for some minutes [19].

2.5 Standardization of Inoculum

The test organism was prepared according to method described by Cheesbrough [20]. One colony was picked from each culture of (E. coli and S. aureus) and then inoculated into a freshly prepared nutrient broth and incubated for 24 hours at 37°C. It was further sub-cultured into nutrient broth and incubated for 3 hours at 37°C using a sterilized wire loop. The turbidity of the test organisms for susceptibility test was determined by comparing with it 0.5 McFarland standard of Barium sulphate solution which is equivalent to 1×10⁶ CFU/mL.

2.6 Inoculation of Test Organisms

The inoculation of the organism was carried out using streaking method of inoculation on the surface of the nutrient agar plates.

2.7 Agar Well Diffusion Method

Agar well diffusion was carried out to determine antimicrobial activity of the extracts against the test organism as described by Adeshina et al. [21]. The molten sterile nutrient agar of 20 ml was poured into sterile petri dish and allowed to set. The sterile nutrient agar plates were flooded with 1.0 mL of the standardized inoculum and the excess was drained off. A sterile cork borer (No. 4) was used to bore holes into the agar plate. One drop of the molten agar was used to seal the bottom of the bored hole, so that the extract will not sip beneath the agar. 0.1 ml of the fresh, dried and oil extracts was added to fill the bored holes. A control was prepared by putting 0.1 ml of freshly prepared sterile distilled water in one of the bored holes. One hour pre-diffusion time was allowed, after which the plates were incubated at 37°C for 24 hours. The zones of inhibition were then measured in millimetre. The above method was carried out in triplicates for each set and the mean of the diameters of the resulting inhibition zones were taken.

2.8 Antibiotic Susceptibility Screening

Antibiotic susceptibility patterns were determined by modified Kirby Bauer disc diffusion as described by Garrod and Waterworth [22]. The antibiotic disc used are: Pefloxacin (10 μg), Gentamycin (10 μg), Ampiclox (30 μg), Zinnacef (20 μg), Amoxicillin (30 μg), Rocephin 25 μg), Ciprofloxacin (10 μg), septrin (30 μg), Erythromycin (10 μg), Streptomycin (30 μg), Ampicillin (40 μg) and Vancomycin (40 μg). The isolates were first inoculated into nutrient agar and antibiotic disc were gently but firmly placed on the nutrient agar. The plates were incubated at 37°C for 24 hours after which the diameters of the inhibition zones were measured.

2.9 Preparation of McFarland Standard

McFarland equivalent turbidity standard was prepared as described by Ankri et al. [23]. Zero point six milliliter (0.6 mL) of 1% Barium chloride dehydrate solution (BaCl2H2O) to 99.4 ml of 1% sulphuric acid solution (H₂SO₄). A small volume of the turbid solution was transferred to
capped tube of the same type that was used to prepare the test and of control inocula. This was stored in the dark at room temperature.

2.10 Determination of Minimum Inhibition Concentration (MIC)

The minimum inhibition concentration of the three *Z. officinale* extracts was tested as described by Adeshina et al. [21]. Using nutrient broth MICs were tested at 0.1 µg/mL, 0.2 µg/mL, 0.3 µg/ml and 0.4 µg/ml concentrations. One milliliter of each of the bacterial broth was inoculated in the four serially diluted ginger extracts. The test tubes and their contents were sealed with cotton wool and aluminum foil and incubated at 37 ºC for 24 hours. The lowest dilution which inhibited the growth of the test organism was considered as the minimum inhibition concentration.

2.11 Statistical Analysis

Analysis of Variance (ANOVA) was used to test if there were statistically significant differences between the antibacterial activities of the different extracts by comparing the means of the zones of inhibition at 99% level of confidence (P=0.01).

3. RESULTS AND DISCUSSION

In this study, the antimicrobial activity of *Z. officinale* extracts; extracts of fresh and dried *Z. officinale* and its oil were tested on *S. aureus* and *E. coli*. Determination of the minimum inhibitory concentration against the test organism and comparison of the inhibitory effects of the different extracts with commercially available antibiotics were carried out.

The result presented in Table 1 showed the inhibitory effects of different *Z. officinale* extracts; dried *Z. officinale* extract (40 mg/ml), fresh *Z. officinale* extract (100%) and *Z. officinale* oil (100%) on *E. coli* and *S. aureus*. Dried ginger showed that 17.50±0.87 mm and 14.50±6.08 mm zone of inhibition recorded against *S. aureus* and *E. coli* respectively; fresh ginger achieved 15.00±3.54 mm and 15.00±3.54 mm zone of inhibition on *S. aureus* and *E. coli* respectively, and *Z. officinale* oil only achieved 12.00±2.83 mm zone of inhibition on *S. aureus* but none on *E. coli*.

The result presented in Table 2 indicated the inhibitory effect of fresh *Z. officinale* on *S. aureus* and *E. coli* at different concentrations. Fresh *Z. officinale* showed 15.00±1.40 mm and 12.00±2.83 mm zones of inhibition at 100%, 50% concentrations respectively on *S. aureus* and, 15.00±3.54 mm and 13.00±2.66 mm zones of inhibition also at 100%, 50% concentrations respectively on *E. coli*. However, there was no effect at 25% and 12.5% on both organisms.

The result presented in Table 3 showed the inhibitory effect of dried *Z. officinale* extracts on *S. aureus* and *E. coli* at different concentrations. For the inhibitory effects of dried *Z. officinale* extract at concentrations of 10 mg/mL, 20 mg/mL, 30 mg/mL, and 40 mg/mL the zone of inhibitions are 11.00 ±1.41 mm, 13.5 ± 0.71 mm, 14.00± 2.66 mm and 17.5 ± 0.87 mm respectively and, on *S. aureus* and, 6.00 ± 2.83 mm, 7.5 ± 2.12 mm, 8.00 ± 2.83 mm and 14.5± 2.08 mm on *E. coli* respectively.

Table 1. Inhibitory effects of different *Z. officinale* extracts; dried *Z. officinale* extract (40 mg/ml), fresh *Z. officinale* extract (100%), *Z. officinale* oil (100%) on *E. coli* and *S. aureus*

<table>
<thead>
<tr>
<th>Z. officinale Extracts</th>
<th>S. aureus Zone of inhibition (mm)</th>
<th>E. coli Zone of inhibition (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry ginger</td>
<td>17.50±0.87 mm</td>
<td>14.50±6.08 mm</td>
</tr>
<tr>
<td>Fresh ginger</td>
<td>15.00±3.54 mm</td>
<td>15.00±3.54 mm</td>
</tr>
<tr>
<td>Oil ginger</td>
<td>12.00±2.83 mm</td>
<td>0.00 mm</td>
</tr>
<tr>
<td>Control</td>
<td>0.00 mm</td>
<td>0.00 mm</td>
</tr>
<tr>
<td>p-value (ANOVA)</td>
<td>0.000</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 2. Inhibitory effect of fresh *Z. officinale* on *S. aureus* and *E. coli* Zone of inhibition (mm)

<table>
<thead>
<tr>
<th>Zone of inhibition (mm)</th>
<th>100%</th>
<th>50%</th>
<th>25%</th>
<th>12.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>15.00±1.40</td>
<td>12.00±2.83</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>E. coli</td>
<td>15.00±3.54</td>
<td>13.00±2.66</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Furthermore, Table 4 indicated the inhibitory effect of *Z. officinale* oil on *S. aureus* and *E. coli*. Zone of inhibition (mm). The oil extract showed zones of inhibition at 100% and 50% concentrations of the extract on *S. aureus* with 12.00±2.83 mm and 7.00±4.24 mm respectively. While there was no activity with *E. coli* at all concentrations of the oil extract.

The result presented in Table 5 revealed the minimum inhibitory concentration (MIC) of different *Z. officinale* extracts on *S. aureus* and *E. coli*. MIC results for both dried and fresh *Z. officinale* extracts on *S. aureus* and *E. coli* showed that both extracts have inhibitory effect at low concentration of 2.5 mg/ml on both organisms and have no inhibitory effect at 1.25 mg/ml. Oil extract had no inhibitory effect on both organisms even at concentration of 10 mg/ml.

The result presented in Table 6 showed the comparative inhibitory effects of different extracts from *Z. officinale* and standard antibiotics on *S. aureus* and *E. coli*. Streptomycin showed the widest zone of inhibition on both organisms; 22.00±2.83 mm and 21.00±1.41 mm for *E. coli* and *S. aureus* respectively while Amoxicillin sowed no zone of inhibition against both test organisms.

The extracts of *Z. officinale* have antimicrobial properties against *S. aureus* and *E. coli*. The widest zone of inhibition was obtained with dried *Z. officinale* on *S. aureus* and zones of inhibition were observed on *E. coli* as well. These showed that the *Z. officinale* extracts are effective against test bacteria and this agrees with the findings from the work of Hiba et al. [24]. On comparison of antibacterial activity of the three *Z. officinale* extracts on the test microorganisms (*S. aureus* and *E. coli*), all the three extract exhibited antimicrobial activity (*P*<0.01). At low concentration of 10 mg/ml, dried *Z. officinale* was active against both organisms while fresh *Z. officinale* aqueous extract and *Z. officinale* oil were not active at equivalent concentrations of 25% on both test organisms. This is similar with the works of Adeshina et al. [21] who worked with three solvent extracts of *Z. officinale* and found that fresh *Z. officinale* and *Z. officinale* oil were not active against bacterial test organisms at low concentrations. This showed that *S. aureus* and *E. coli* is highly susceptible to extracts of dried *Z. officinale* on the other hand, lesser zone of inhibition was observed with *Z. officinale* oil and fresh *Z. officinale* which indicate that both organisms are less susceptible to the fresh *Z. officinale* extracts and *Z. officinale* oil. Out of the three *Z. officinale* extracts i.e. dry *Z. officinale*, fresh *Z. officinale* and *Z. officinale* oil, at four different concentration level 66.6% where found to have antimicrobial activity against the gram positive bacteria (*S. aureus*). Dried *Z. officinale* showed antimicrobial activity at 10 mg/ml, 20 mg/ml, 30 mg/ml, and 40 mg/ml as shown in Table 2. *Z. officinale* oil showed no activity on *E. coli* at all concentrations suggesting that *E. coli* is not susceptible to *Z. officinale* oil.

Table 3. Inhibitory effect of dried *Z. officinale* extracts at different concentrations on *S. aureus* and *E. coli*

<table>
<thead>
<tr>
<th></th>
<th>40 mg/ml</th>
<th>30 mg/ml</th>
<th>20 mg/ml</th>
<th>10 mg/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>17.5 ± 0.87</td>
<td>14.00± 2.66</td>
<td>13.5 ± 0.71</td>
<td>11.00 ±1.41</td>
</tr>
<tr>
<td>E. coli</td>
<td>14.5± 2.08</td>
<td>8.00 ± 2.83</td>
<td>7.5 ± 2.12</td>
<td>6.00 ± 2.83</td>
</tr>
</tbody>
</table>

Table 4. Inhibitory effect of *Z. officinale* oil extracts on *S. aureus* and *E. coli* zone of inhibition (mm)

<table>
<thead>
<tr>
<th></th>
<th>100% extract</th>
<th>50% extract</th>
<th>25% extract</th>
<th>12.5% extract</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>12.00±2.83</td>
<td>7.00±4.24</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>E. coli</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 5. Minimum Inhibition concentration (MIC) of different Z. officinale extracts on S. aureus and E. coli

<table>
<thead>
<tr>
<th>Organism</th>
<th>Dried</th>
<th>Fresh</th>
<th>Oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. aureus</td>
<td>2.5 mg/mL</td>
<td>2.5 mg/mL</td>
<td>></td>
</tr>
<tr>
<td>E. coli</td>
<td>2.5 mg/mL</td>
<td>2.5 mg/mL</td>
<td>></td>
</tr>
</tbody>
</table>

Key: > = No inhibition at the highest concentration tested (10 mg/ml)

Table 6. Comparative inhibitory effects of different extracts from Z. officinale and standard antibiotics on S. aureus and E. coli

<table>
<thead>
<tr>
<th>Antibiotic/extract</th>
<th>E. coli (mm)</th>
<th>S. aureus (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dried Z. officinale extract</td>
<td>14.5±0.68</td>
<td>17.50±0.87</td>
</tr>
<tr>
<td>Fresh Z. officinale extract</td>
<td>15.00±3.54</td>
<td>15.00±1.40</td>
</tr>
<tr>
<td>Z. officinale oil extract</td>
<td>0.00</td>
<td>12.00±2.83</td>
</tr>
<tr>
<td>Pefloxacin</td>
<td>NA</td>
<td>12.50±2.92</td>
</tr>
<tr>
<td>Gentamycin</td>
<td>15.00±1.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Ampiclox</td>
<td>NA</td>
<td>0.00</td>
</tr>
<tr>
<td>Zinnacet</td>
<td>NA</td>
<td>0.00</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Rocephin</td>
<td>NA</td>
<td>14±4.47</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>22.00±2.83</td>
<td>21.00±1.41</td>
</tr>
<tr>
<td>Septrin</td>
<td>15.00±1.40</td>
<td>0.00</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>NA</td>
<td>0.00</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>13.00±1.41</td>
<td>NA</td>
</tr>
<tr>
<td>Sparfloxacin</td>
<td>17.50±3.54</td>
<td>NA</td>
</tr>
<tr>
<td>Augmentin</td>
<td>21.00±1.41</td>
<td>NA</td>
</tr>
<tr>
<td>Tarivid</td>
<td>16.50±2.12</td>
<td>NA</td>
</tr>
<tr>
<td>Control (Distilled water)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Key: NA= not applicable (substance not tested on the isolate)

The minimum inhibitory concentration (MIC) of the extracts tested at four different concentrations (10 mg/ml, 5 mg/ml, 2.5 mg/ml and 1.25 mg/ml) showed that both dried and fresh Z. officinale extracts have the MIC of 2.5 mg/ml on both S. aureus and E. coli while Z. officinale oil showed no inhibitory effect even at the highest concentration (10 mg/ml) tested. This suggested that Z. officinale oil has weak antimicrobial activity against the test organisms and concurs with the findings of Kun [25]. The study showed that streptomycin had the highest zone of inhibition against both S. aureus and E. coli, in comparison to the Z. officinale extracts, dried and fresh Z. officinale also showed zone of inhibition on both test organisms, which agrees with the works of Sebiomo et al. [26]. The dried Z. officinale extract showed 14.5±0.68 mm and 17.50±0.87 mm on S. aureus and E. coli respectively, which shows that dried Z. officinale is more effective on E. coli. While the fresh Z. officinale showed 15.00±3.54 mm and 15.00±1.40 mm on both test organisms, while Z. officinale oil was not effective on S. aureus and E. coli, Chloramphenicol, Septrin and Gentamycin shows inhibitory effects on E. coli which agrees with the works of [27]. Based on the results obtained, streptomycin and Z. officinale extracts have inhibitory effects on both organisms.

4. CONCLUSION

This study showed that Z. officinale plants can be a source of the plants possess antimicrobial activities that may be useful plant may potentially be used as antimicrobial agents in new drugs for treatment of infectious diseases caused by bacterial pathogens. The most active extract on inhibited both S. aureus and E. coli is dried Z. officinale extract.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

26. Sebiomo A, Awofodu AD, Awosanya AO, Awotona FE, Ajayi AJ. Comparative studies of antibacterial effect of some

© 2018 Njobdi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sciencedomain.org/review-history/26519